New preprint on multilevel Monte Carlo with non-nested meshes available!

Our new paper on Efficient white noise sampling and coupling for multilevel Monte Carlo with non-nested meshes is now available on arXiv!

supermesh

When solving stochastic partial differential equations (SPDEs) driven by additive spatial white noise, the efficient sampling of white noise realizations can be challenging. In this paper, we present a new sampling technique that can be used to efficiently compute white noise samples in a finite element method and multilevel Monte Carlo (MLMC) setting. The key idea is to exploit the finite element matrix assembly procedure and factorize each local mass matrix independently, hence avoiding the factorization of a large matrix. Moreover, in a MLMC framework, the white noise samples must be coupled between subsequent levels. We show how our technique can be used to enforce this coupling even in the case of non-nested mesh hierarchies. We demonstrate the efficacy of our method with numerical experiments. We observe optimal convergence rates for the finite element solution of the elliptic SPDEs of interest in 2D and 3D and we show convergence of the sampled field covariances. In a MLMC setting, a good coupling is enforced and the telescoping sum is respected.

New preprint investigating the effects of uncertainty on cardiac mechanics

uq_rocio

Our new paper on Uncertainty in cardiac myofiber orientation and stiffnesses dominate the variability of left ventricle deformation response is now available on arxiv!

Computational cardiac modelling is currently evolving from a pure research tool to aiding in clinical decision making. Assessing the reliability of computational model predictions is a key factor for clinical use, and uncertainty quantification (UQ) and sensitivity analysis are important parts of such an assessment. In this study, we apply new methods for UQ in computational heart mechanics to study uncertainty both in material parameters characterizing global myocardial stiffness and in the local muscle fiber orientation that governs tissue anisotropy. The uncertainty analysis is performed using the polynomial chaos expansion (PCE) method, which is a non-intrusive meta-modeling technique that surrogates the original computational model with a series of orthonormal polynomials over the random input parameter space. In addition, in order to study variability in the muscle fiber architecture, we model the uncertainty in orientation of the fiber field as an approximated random field using a truncated Karhunen-Loéve expansion. The results from the UQ and sensitivity analysis identify clear differences in the impact of various material parameters on global output quantities. Furthermore, our analysis of random field variations in the fiber architecture demonstrate a substantial impact of fiber angle variations on the selected outputs, highlighting the need for accurate assignment of fiber orientation in computational heart mechanics models.